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Workshop Etiquette

Please mute yourself and turn off video during the session.

Questions may be submitted in the chat and will be answered
when appropriate. You may also raise your hand, unmute, and
ask questions during Q&A at the end of the presentation.

By joining today, you are agreeing to UCAR’s Code of Conduct

Recordings & other material will be archived & shared publicly.

Feel free to follow up with the GPU workshop team via Slack or
submit support requests to support.ucar.edu

— Office Hours: Asynchronous support via Slack or schedule a time



https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
http://support.ucar.edu/

Workshop Series and Logistics
Scheduled biweekly through August 2022 (short break in May)

Sequence of sessions detailed on main webpage
— Full workshop course description document/syllabus
— Useful resources for independent self-directed learning included

Registrants may use workshop’s Project ID & Casper core hours

— Please only submit non-production, test/debug scale jobs

— For non-workshop jobs, request an allocation. Easy access startup
allocations may be available for new faculty and graduate students.

— New NCAR HPC users should review our HPC Tutorials page

Interactive sessions will share code via GitHub and JupyterHub
notebooks. More details will be shared prior to these sessions.


https://www2.cisl.ucar.edu/what-we-do/training-library/gpu-computing-workshops
https://docs.google.com/document/d/1Tovha_SA0-4QPdOkc1Z89KQgVNAUsTDLNa_PqeCAvhU/edit#heading=h.90nvn0bxldkr
https://docs.google.com/document/d/1nFqYyIXyjlBu0xj4wqlN9EYQjhQ93wJ8SoRDRyWh7ZY/edit
https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-GPUdevelopmentjobs
https://arc.ucar.edu/knowledge_base/75694351
https://www2.cisl.ucar.edu/what-we-do/training-library/hpc-tutorials

GPU Community Engagement

Below are recommended community resources

« Join NCAR GPU Users Slack and #apu workshop participants

« Consider joining other Slack communities or online spaces
— OpenACC and GPU Hackathon Slack workspace (NVIDIA managed)
— If you’re excited about Julia, they have a Slack and #GPU channel
— NCAR GPU Tiger Team for latest updates and future directions at NCAR
— Watch Stackoverflow tags for QpenACC, OpenMP, CUDA, or others

* Prepare an application for an upcoming GPU Hackathon

Find your GPU community! Key to modern science is collaboration!



https://join.slack.com/t/ncargpuusers/shared_invite/zt-12nrvvnar-191KYVEu6I~IUDQuE~ofZw
https://www.openacc.org/community#slack
https://julialang.org/slack/
https://wiki.ucar.edu/display/gttwiki/GPU+Tiger+Team+Home
https://stackoverflow.com/questions/tagged/openacc
https://stackoverflow.com/questions/tagged/openmp
https://stackoverflow.com/questions/tagged/cuda
https://gpuhackathons.org/

Overview

e Achieving High Performance Computing with GPUs
e History of GPU Computing

* Trends in GPU and CPU Performance
— Power consumption? Acceleration? Availability?

« Vector and Thread Processing - CPU vs GPU

« GPU Software Paradigms and Community Support

How to Approach GPU Projects or GPU Refactoring
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Rmax Rpeak Power
Rank  System Cores (TFlop/s) (TFlop/s) (kw)

G P U S E n a b I e Ex a S c a I e ' 1 Supercomputer Fugaku - Supercomputer Fugaku, 7630848  442,010.0 5372120 29,899
] AG4FX 48C 2.26Hz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science
Japan

Summit - IBM Power System AC922, IBM POWER9 22C 2,414,592 148,600.0 200,794.9 10,096
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR

Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

« 7 of top 10 supercomputers
leverage GPUs from Top500
* 9 of top 10 power Green500

Sierra - IBM Power System AC922, IBM POWER9 22C 1,572,480 94,640.0 125,712.0 7,438
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR

Infiniband, IBM / NVIDIA / Mellanox

DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 10,649,600 93,014.6 125,435.9 15,371
260C 1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

« GPUs enable ~3.5x more
FLOPs/Watt efficiency
— Lower Costs
— FEases Access

Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 761,856 70,870.0 93,750.0 2,589
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE

DOE/SC/LBNL/NERSC

United States

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 555,520 63,460.0 79,215.0 2,646
2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

00Gdol 120g AON

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 4,981,760 61,444.5 100,678.7 18,482
12C 2.2GHz, TH Express-2, Matrix-2000, NUDT

National Super Computer Center in Guangzhou

China

 GPUs are designed
inherently parallel

« CPU cores designed for
complex serial tasks

JUWELS Booster Module - Bull Sequana XH2000 , AMD 449,280 44,1200 70,980.0 1,764
EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR

InfiniBand/ParTec ParaStation ClusterSuite, Atos

Forschungszentrum Juelich (FZJ)

Germany

HPCS - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz, 669,760 35,450.0 51,720.8 2,252
NVIDIA Tesla V100, Mellanox HDR Infiniband, DELL EMC

Eni S.p.A.

Italy

Voyager-EUS2 - ND96amsr_A100_v4, AMD EPYC 7V12 253,440 30,050.0 39,531.2
48C 2.45GHz, NVIDIA A100 80GB, Mellanox HDR
Infiniband, Microsoft Azure
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https://www.top500.org/lists/top500/2021/11/
https://www.top500.org/lists/green500/2021/11/

Status Quo Across Architectures
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https://github.com/karlrupp/microprocessor-trend-data

Status Quo Across Architectures
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https://github.com/karlrupp/microprocessor-trend-data

Data is the Future of Scientific Discovery

400

Model

m== Satellite/Radar
350 L In Situ/Other

300 - . 1
The projected
volume of o e e B B B |
worldwide §
climate data S]] E——— . 1
including climate @
models, remotely -g 150
sensed data, and &
in situ 1o
instrumentation/
proxy data. 2
04
2010 2015 2020 2025 2030

Climate Data Challenges in the 21st Century Year

Jonathan T. Overpeck, et al.
Science 331, 700 (2011);
DOI: 10.1126/science. 1197869
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https://www.science.org/doi/10.1126/science.1197869

Significant GPU Adoption and Exploration in Earth Sciences

Global: Model Organizations Funding Source )
() ce3sM scream s DOE: ORNL, SNL E3SM, ECP (EISM ECP
HOMEXX, SCREAM
MPAS-A NCAR, UWyo, KISTI, IBM WACA II B NCAR <A NVIDIA.
FV3/UFS NOAA SENA
: NUMA/NEPTUNE  US Naval Res Lab, NPS ONR
cF IFS ECMWF ESCAPE, USDOE [ESC/
vl GungHo/LFRic MetOffice, STFC PSyclone done%
%,@‘ ICON DWD, MPI-M, CSCS, MCH PASC ENIAC i | =
¢ _4 CLIMA / NUMA CLiMA (NASA JPL, MIT, NPS) Private, USNSF  SCHMIDT &)
:-:’ij Fv3 Vulcan, UW/Bretherton Private PAUL G. ALLEN
Regional: o
€®SMO cosmo MCH, CSCS, DWD PASC GridTools
“‘RF* AceCAST-WRF TempoQuest Venture backed
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https://drive.google.com/file/d/19dwgrbmpYTXfUfcZ9BUfjhmWEtPPwDfh/view?usp=sharing

Strong Scaling MPAS-A Moist Dynamics:
(56 levels, SP) at 3, 5 & 10 km

MPAS-A 100
An atmospheric model that —=—Xeon v4 nodes (10 km)

solves the compressible
non-hydrostatic equations in both
gIObaI and regional ——6xV100/AC922 (3 km)
configurations with variable
resolution configurations

6xV100/AC922 (10 km)
——6xV100/AC922 (5 km)

Days/Hr
[
o

Blue (Xeon CPUs)

Significant increase in
simulated Days/Hr for
10km resolution case 1
4 16 64 256 1024 4096
Number of GPUs or dual socket CPU nodes
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https://drive.google.com/file/d/1fnRxqouu34qLKt6oiXfhzO7wri_EU-py/view?usp=sharing
http://hogback.atmos.colostate.edu/earthworks/pdf/EarthWorks-proposal.enhanced.pdf

History of GPU Computing

NCAR
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GPU Course of History

« 1978 - First GPGPU from |konas Graphics Systems

A Graphics Processing and Raster Display for cockpit instrumentation ( )

« 1986 - Tim Van Hook, solid modeling and ray tracing microcode )
« 1994 - “GPU” term coined by Sony under PlayStation video game console

« 2001 - First and run on GPUs
NVIDIA GeForce 3 with programmable shaders and floating-point
Mark Harris, “ ”and “ ” 2003 Dissertation

« 2002 - “GPGPU” term coined by Mark Harris

« 2007 - Release of CUDA

« 2009 - Release of OpenCL, Foundations laid for unified memory concept
« 2011 - OpenACC v1.0 “forks” from OpenMP

« 2020 - 25% of Top500 with NVIDIA GPUs

and M. Harris “

NCAR
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http://portal.acm.org/citation.cfm?id=807412
http://portal.acm.org/citation.cfm?id=15922.15887
https://dl.acm.org/doi/10.1145/582034.582089
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6705
http://www.markmark.net/clouds/
https://dl.acm.org/doi/10.5555/997457
https://www.graphics-history.org/ikonas/
https://www.cs.unc.edu/xcms/wpfiles/50th-symp/Harris.pdf

Faltering Moore’s Law

48 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Karl Rupp,

End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)

CISC 2X/2.5 years
(22%/year)
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“A New Golden Age for Computer Architecture”, Hennessy & Patterson

End of the Line = 2X/20 years (3%/yr)
Amdahl’s Law = 2X/6 years (12%/year)

RISC 2X/1.5 years
(52%/year)

1995 2000 2005 2010 2015

Transistor counts still increasing but had to switch to parallel processors in 2004
Diminishing returns on CPU performance forced greater adoption of GPUs
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https://github.com/karlrupp/microprocessor-trend-data
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Why Is GPU History Important?

Understand CONTEXT & FUTURE DIRECTION of GPU development
Trust the LONG & ESTABLISHED communities around scientific use of GPUs

Specific Narrow Applications 40+ years Many Broad Applications

(Graphics only) > (LinAlgebra, FFTs, PDEs, DNNs)

Many years of software abstraction to enable general developers to use GPUSs.
No more microcode or low level languages required!

NCAR
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Trends in CPU and GPU Performance
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Heat Dissipation and Performance
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https://ieeexplore.ieee.org/document/6634083
https://eehpcwg.llnl.gov/documents/conference/sc13/av_computer_architecture_shalf.pdf

Energy per flop (pj)

Energy Efficiency and Data Locality
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predicted to achieve lowest energy use & high efficiency.

Intranode/SMP.
and

. L Internode/MPI Communication
On-chip communication

Takeaway: Keep data
movement nearby!

Figure 4. Performance. Projections in energy per flop show that only the hybrids have a chance of reaching
exaflop performance within the 20-megawatt (MW) power budget by 2024, but with the caveat that they

must improve efficiency to offer commensurate improvements in application performance. (Here, p| =
picojoules and UHPC = ubiquitous high-performance computing.)
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Trends in CPU and GPU Performance

Figure 5. Data movement is overtaking computation as the most dominant cost of a system both in terms
of dollars and in terms of energy consumption.

“ ” Kogge & Shalf, 2004 and



https://ieeexplore.ieee.org/document/6634083
https://eehpcwg.llnl.gov/documents/conference/sc13/av_computer_architecture_shalf.pdf

Data Locality Promotes Green Computing

Maintaining data locality, as inherent by design of GPU
architectures, enables reduction in carbon emissions

« MPAS 10 km, 72 GPUs or nodes
— CPU Cheyenne: 9.75 kg CO2
—  GPU Summit: 2.26 kg CO2

« MPAS 3 km, on 804 GPUs or nodes
— CPU Cheyenne (est): 330 kg CO2
—  GPU Summit: 87 kg CO2

R. Loft, AMS 2020 - “

NCAR
UCAR


https://drive.google.com/file/d/1fpGvVEft-QSq-o5_0kzhUDM8DEtZFlLH/view

Performance Efficiency of GPUs
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2 9@
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1

e Recently, both theoretical single and double precision TFLOP

2008 2010 2012 2014 2016 2018 2020 GPU performance consistently exceed CPU
Release Date

e Significant opportunity cost on GPUs using double precision
Fig. 5. GPU FLOPS per watt.

NCAR

ucAr | Trends in CPU and GPU Performance



https://arxiv.org/abs/1911.11313

Side Note: Consider Mixed Precision Arithmetic

« Single Precision floating point can often still maintain significant
accuracy in specific ranges
* Models often memory bound, reduced precision increases bandwidth

* Any precision error handled by mean of ensemble or nonlinear chaos

— Hatfield’s ECMWF presentation
— JAMES article “

7

(a) Without initial error (b) With initial error (c) With model error

— — —
1) o -
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ot
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----- double-precision

RMSE w.r.t. “truth” (double-precision)
o

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Forecast lead time (model timesteps) Forecast lead time (model timesteps) Forecast lead time (model timesteps)

Lorenz ‘63 example
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https://events.ecmwf.int/event/167/contributions/1378/attachments/806/1428/AS2020-Hatfield.pdf
https://www.essoar.org/doi/10.1002/essoar.10503741.1

Present Shift in the HPC Computational Model

” Kogge & Shalf, 2004 and
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https://ieeexplore.ieee.org/document/6634083
https://eehpcwg.llnl.gov/documents/conference/sc13/av_computer_architecture_shalf.pdf

Vector and Thread Processing
CPU vs GPU

NCAR
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Recall - Flynn’s Taxonomy

Single Data Multiple Data
Single e SISD e SIMD
gk e typical CPU thread e vector processors
Instruction

e GPU thread blocks

e MISD e MIMD

Multiple e possibly set of filters | e cluster of nodes
Instruction | ® fault tolerance and e multi-core CPU
redundancies

GPUs process essentially SIMD operations at massive parallel scale.
Hardware differences renames this to SIMT, T=Threads.

BEQE | Vector and Thread Processing - CPU vs GPU



SIMD vs SMT vs SIMT

SMT Enabled SMT Disabled
CPU source 1/dest. e ThesdA  Theada
SIMD source 2
1 instruction — multiple data
AVX - AVX2... -
Wait
(Queued)
Instruction Decoder and Warp Scheduler
GPU
SIMT
1 instruction — multiple
threads
thfea d single ?ffri i:r:(essor

SIMD uses vector units while SIMT leverages threads. A hybrid of the two,
SMT (Simultaneous Multi-Threading) refers to multiple threads per CPU core

NCAR
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https://www.hardwaretimes.com/simd-vs-simt-vs-smt-whats-the-difference-between-parallel-processing-models/
https://thomassmart.github.io/2018/10/24/Hyper-V-CPU-Scheduler.html

CPU vs GPU

CPU - AMD EPYC Bus GPU - A100 Shinkansen
64 108
2 64
4 32

A A RS gz F o Ve
64 x 2 x4 =512 SIMD ops 108 x 64 x 32 = 221,184 SIMT ops!
Busiest Bus Terminal (NYC): ~225 thousand/day Busiest Train Station (Shinjuku, Tokyo): ~3.5 million/day

NCAR
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CPU vs GPU

CPU - AMD EPYC Bus GPU - A100 Shinkansen
Adaptable to different road types Must follow laid track
(complex ALUs) (simpler ALUs)
Many different roads to use Fewer options for destinations
(branch prediction) (no branch prediction)

o & e 1 4 § o -
Can change lanes, traffic manageable? Passenger load/de-load very slow
(Large memory and caches) (High cost to move memory to device)
Small parallel capacity, complex tasks Large parallel capacity, high throughput

NCAR
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Side Note: Branchless Programming

If IF-ELSEIF branches in your GPU kernels concern you...

def Smaller(a, b

if at< b - def Smaller Branchless(a, b
return a return a * (a<b) +b * (b <= a
else
return b

Creel, YouTube - “

NCAR
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https://www.youtube.com/watch?v=bVJ-mWWL7cE

Some awareness of threaded processing will help towards
optimizing performance of GPU kernels, ie compute units, that are
scheduled on the GPU.

We will go into more detail on these concepts in later sessions

NCAR
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GPU Software Paradigms and Community Support
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Building Trust in GPU Community Tools

When developing software, there are many lower levels of computer
architecture that we don’t directly interact with and many times require
little awareness of.

Essentially, we have to trust that decisions made by microprocessor
architects and compiler engineers are making good decisions for us
when their tools build our intended software

Do you trust your colleagues to make optimal decisions?

NCAR
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NVIDIA’s Software Ecosystem
NVIDIA HPC SDK |

DEVELOPMENT ANALYSIS

Core Math Communication
Libraries Libraries Libraries Debugger

HPC-X
Standard C++ & Fortran cuBLAS cuTENSOR Nsight cuda-gdb
MPI
Ucx SHMEM

OpenACC & OpenMP ++ Thrust CUSPARSE cuSOLVER SHARP HCOLL Systems Host

NVSHMEM
Compute Device

fort FFT RAND
nvfortran cul cu NCCL

We will cover many of these

tOpiCS in thlS WorkShOp Develop for the NVIDIA Platform: GPU, CPU and Interconnect

Libraries | Accelerated C++ and Fortran | Directives | CUDA
7-8 Releases Per Year | Freely Available

BEQE GPU Software Paradigms and Community Support


https://developer.nvidia.com/hpc-sdk

Recall - Descriptive vs Prescriptive Programming

. OpenMP (flexible) ] OpenACC (flexible)
Prescnptlve MPI CUDA Descrlptlve do concurrent  std::par
Programmer explicitly parallelizes the Compiler parallelizes the code with
code, compiler obeys guidance from the programmer
Requires little/no analysis by the compiler Compiler must make decisions from

available information
Substantially different architectures
require different directives Compiler uses information from the
programmer and heuristics about the
Fairly consistent behavior between architecture to make decisions
implementations
Quality of implementation greatly affects
results.

Progress in GPU computing has significantly reduced barrier to entry.

Compilers and other tools can do the heavy lifting for you.
NCAR
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Comparison of GPU Programming - Compatibility

From/To | CUDA OpenCL SYLC OpenACC HIP
OpenMP
If you need the best C/C++ Add Code Add Code Add Code Pragmas Add Code
performance fora  [r—————
GPU kernel, CUDA Fortran Add Code Rewrite Rewrite Pragmas Rewrite
can be used
alongside pragmas CUDA Keep Structure | Keep Structure | Rewrite Convert
OpenCL Keep Structure Keep Structure | Rewrite Keep Structure
SYLC Keep Structure | Keep Structure Rewrite Keep Structure
OpenACC Rewrite Rewrite Rewrite Rewrite
OpenMP
HIP Convert Keep Structure | Keep Structure | Rewrite

CUDA / HIP (AMD) - Often requires new codes and rewrites
OpenACC/OpenMP - Easy to implement, achieves good enough performance

NCAR
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https://drive.google.com/file/d/17LKgnRsdBWABujXaR7UvZ-zxQ7S4nRju/view

Best Practices with GPU Software Development

CUDA,
Libraries Directives Programming
Languages
Drop-In, heavily tested, Easy acceleration, good Max flexibility, control, &
optimized performance enough performance performance; Most effort

1 2 3

~N_ A~ A

Only a suggested order of implementation as part of a GPU project, depends highly on model needs.

NCAR
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Best Practices with GPU Software Development

CUDA,
Libraries Directives Programming
Languages
Drop-In, heavily tested, Easy acceleration, good Max flexibility, control, &
optimized performance enough performance performance; Most effort

When using any of these approaches, ALWAYS MEASURE PROGRESS

Profile — Determine Limiter — Apply Optimizations — lterate

using NSight Systems and Nsight Compute

NCAR
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Comparing Performance of Programming Paradigms

NWChem TCE CCSD(T) kernels

@ OpenMPCPU @ StdPar GPU OpenACC GPU @ OpenMP GPU
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Comparing Performance of Programming Paradigms

NWChem TCE CCSD(T) kernels
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Future Directions of GPU Programming
Tools are constantly being expanded upon towards...

* Increasing performance of descriptive programming approaches

—  OpenACC/OpenMP robustly supported, may merge?
— ISO Standard parallelism (do concurrent & std: :par)

« Promoting portability in software design

* Developing robust libraries that are widely available

— Very easy to drop in ML/Al apps for GPUs, Legate Numpy/cuNumeric
— GPU equivalents to MKL and many important math algorithms

NCAR
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How to Approach GPU Projects or GPU Refactoring
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GPU Modernization Project Refactorization Template

Focus on a specific use case
Search for additional parallelism
Manually manage memory
lteratively apply the steps above

Refactor and remove GPU anti-patterns

a. Global variables, memory movements
b. Incompatible data constructs, ie STL
Create a mini-app to explore design space
Use portable abstractions and frameworks

First
Preparation of code base GPUruns  Incremental improvements
[ 11 1N \
Infrastructure
Team Coding Event MASS RAJA-
Physics Capability GPU BRANCH START FICATION
s MORE PHYSICS
Run Milestone ‘ GLOBAL CPU + GPU
LOOP TAXONOMY RAJAAPI  RAJAAPIV2 VAR MATERIAL SIMULTANEOUS
CUDA § REMOVAL - ‘ ‘ MORE PHYSICS
CONTACT PHYSICS ]
BASIC RESTAR MORE “’“YS'CS
« @® (OROIC)) @® ® @ (g (l)&) g
SR ED LSS LSRN LS PDLOES L 0N LN 8D G OE S L
2 WO W, W e oV O V@ AR Hf 42 W\ W@ OVl o N 2 AR pf 42 W, N\ AT
AU AP A OO A AN PRCPE A AR A A PR P AP SRS ‘
1ST GPU RUN ‘ ‘
FRsT Masor  S'NGLE PHYSICSRUN  LARGE MULTPHYSICS
JOR I NGLE PHYSICS RUN RUNS
PHYSICS PACKAGE
|
MULTIPLE GPUS
Year 1 Year 2 Year 3 Y4

D. Richards, LLNL

Large projects & new software that intends to have a long life cycle require effective planning.

This LLNL project example took ~4 years, but this was early in the team’s learning of heterogeneous
GPU architectures. Newer tools & portable abstraction frameworks, like OpenACC, will speed this up!

NCAR
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https://www.exascaleproject.org/event/sierra_and_elcapitan_coe/

Performance Impacts Along Project Development
'© —Example: Porting of ARES

53

Lagrange hydro capability to a GPU Initial work will likely see
- reduced performance of
1 your model.

However, once data
movement and other
optimizations are
performed, the benefits

0.1

Speedup of Single GPU relative to Haswell node

0.01

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 . N o
can be significant.
Compile Minimize Minimze Asynchro-  Optimize Sierra g
andrunon data dynamic nous individual EA
a GPU motion memory execution  kernels hardware
allocations D. Richards, LLNL
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Effective planning and coordination amongst your team and with
external communities of practice will provide you the most benefit.

We will cover aspects of this process as part of a later topic,
Co-Design

NCAR
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Thank you!
Any Questions?

Additional Resources
Al Learning Materials/Courses for Earth Sciences -
PRACE: “ ”
Nature: “ ”
ACM: “

NCAR
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https://www.ai2es.org/products/education/
https://drive.google.com/drive/folders/1e5cfjwIIiTogd3n894V6uwtKDs8wdAuo
https://www.nature.com/articles/s43588-021-00023-0#Fig3
https://dl.acm.org/doi/abs/10.1145/2766196.2766200
https://dl.acm.org/doi/abs/10.1145/2766196.2766200

Extra Slides
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Example Model Speedups

WRF: A100 vs. SKL = 7x
Socket-level Speedup
Source: NVIDIA — Adie, Jul 2020

GPU Speedups Based on Different Node Configurations

18 - :
2 CPU + 2 GPU 2 CPU + 4 GPU

10 5 (Projected results) ! (Actual run results)

14 f
12 - 4‘ 1.4x

v

Based on NCAR WRF 3.8.1

10 - Higher Single domain, 113M points
is
Y Better Single node CPU-only
1 MPI task each core

Single node CPU+GPU
1 MPI task per GPU

GPU Speedup vs. 2 x SKL Baseline

SKL | V100 | A100 SKL | V100 | A100
J. Adie & S. Posey via from Tempoquest and NCAR
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https://wrfg.net/

Roofline V100 Performance of “Dwarf” Algorithms

Particle Particle
100000 |- SvaV ................ code§ ......... 100000 Sp‘MV . codes
,,,,,,,,,,,,,, I'Stencil {GEMM: " DNN ™ QO o 'stencil
g 10000 CAXPY ; ) e 5 10000 “AXPY
5 ‘ : R S
= 1000 = 1000
S S
9 100 g 100
o o
g 10f o~ g 10
(T § (VI
1+ 1F
T R ATt RIS I T A NI A A R IR SN NS ST O NN T S N B [
1/161/8 1/41/2 1 2 4 8 16 32 64 128256512 1/161/8 1/41/2 1 2 4 8 16 32 64 128256512
arithmetic intensity arithmetic intensity

Performance of GPUs capable of exceeding CPUs, however if data movement is not
managed appropriately (uses PCle too frequently), CPUs are better.

HEQE | Trends in CPU and GPU Performance


https://drive.google.com/file/d/17LKgnRsdBWABujXaR7UvZ-zxQ7S4nRju/view

SIMD vs SMT vs SIMT

SMT Enabled SMT Disabled

CPU
SIMD

1 instruction — multiple data

source 1/dest.
source 2

Thread A Thread B
Thread A Thread B

SSE2/3/4 — Neon — Altivec
AVX - AVX2...

source 1/dest.

(Queued)
Instruction Decoder and Warp Scheduler
GPU

SIMT

1 instruction — multiple
threads

thread single Logical Processor

QO
8
22

Flexibility: SMT > SIMT > SIMD Threaded processes allow

Performance: SIMD > SIMT > SMT Multiple register sets, addresses, flowpaths

HEQE | Vector and Thread Processing - CPU vs GPU



https://www.hardwaretimes.com/simd-vs-simt-vs-smt-whats-the-difference-between-parallel-processing-models/
https://thomassmart.github.io/2018/10/24/Hyper-V-CPU-Scheduler.html

