
Why Use GPU Accelerators
An Introduction to the Pros and Cons of GPU Computing

February 17th, 2022

Daniel Howard - dhoward@ucar.edu
CISL HPCD, Consulting Services Group

mailto:dhoward@ucar.edu

Workshop Etiquette

• Please mute yourself and turn off video during the session.

• Questions may be submitted in the chat and will be answered
when appropriate. You may also raise your hand, unmute, and
ask questions during Q&A at the end of the presentation.

• By joining today, you are agreeing to UCAR’s Code of Conduct

• Recordings & other material will be archived & shared publicly.

• Feel free to follow up with the GPU workshop team via Slack or
submit support requests to support.ucar.edu
– Office Hours: Asynchronous support via Slack or schedule a time

https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
http://support.ucar.edu/

Workshop Series and Logistics

• Scheduled biweekly through August 2022 (short break in May)

• Sequence of sessions detailed on main webpage
– Full workshop course description document/syllabus
– Useful resources for independent self-directed learning included

• Registrants may use workshop’s Project ID & Casper core hours
– Please only submit non-production, test/debug scale jobs
– For non-workshop jobs, request an allocation. Easy access startup

allocations may be available for new faculty and graduate students.
– New NCAR HPC users should review our HPC Tutorials page

• Interactive sessions will share code via GitHub and JupyterHub
notebooks. More details will be shared prior to these sessions.

https://www2.cisl.ucar.edu/what-we-do/training-library/gpu-computing-workshops
https://docs.google.com/document/d/1Tovha_SA0-4QPdOkc1Z89KQgVNAUsTDLNa_PqeCAvhU/edit#heading=h.90nvn0bxldkr
https://docs.google.com/document/d/1nFqYyIXyjlBu0xj4wqlN9EYQjhQ93wJ8SoRDRyWh7ZY/edit
https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-GPUdevelopmentjobs
https://arc.ucar.edu/knowledge_base/75694351
https://www2.cisl.ucar.edu/what-we-do/training-library/hpc-tutorials

 GPU Community Engagement

Below are recommended community resources

• Join NCAR GPU Users Slack and #gpu_workshop_participants

• Consider joining other Slack communities or online spaces
– OpenACC and GPU Hackathon Slack workspace (NVIDIA managed)
– If you’re excited about Julia, they have a Slack and #GPU channel
– NCAR GPU Tiger Team for latest updates and future directions at NCAR
– Watch Stackoverflow tags for OpenACC, OpenMP, CUDA, or others

• Prepare an application for an upcoming GPU Hackathon

Find your GPU community! Key to modern science is collaboration!

https://join.slack.com/t/ncargpuusers/shared_invite/zt-12nrvvnar-191KYVEu6I~IUDQuE~ofZw
https://www.openacc.org/community#slack
https://julialang.org/slack/
https://wiki.ucar.edu/display/gttwiki/GPU+Tiger+Team+Home
https://stackoverflow.com/questions/tagged/openacc
https://stackoverflow.com/questions/tagged/openmp
https://stackoverflow.com/questions/tagged/cuda
https://gpuhackathons.org/

Overview

• Achieving High Performance Computing with GPUs

• History of GPU Computing

• Trends in GPU and CPU Performance
– Power consumption? Acceleration? Availability?

• Vector and Thread Processing - CPU vs GPU

• GPU Software Paradigms and Community Support

• How to Approach GPU Projects or GPU Refactoring

Overview

GPUs Enable Exascale!

• 7 of top 10 supercomputers
leverage GPUs from Top500

• 9 of top 10 power Green500

Achieving High Performance Computing with GPUs

N
ov 2021 Top500

• GPUs enable ~3.5x more
FLOPs/Watt efficiency
– Lower Costs
– Eases Access

• GPUs are designed
inherently parallel

• CPU cores designed for
complex serial tasks

https://www.top500.org/lists/top500/2021/11/
https://www.top500.org/lists/green500/2021/11/

K
arl R

upp, TU
 W

ien, G
itH

ub

EPYC 7763 C
PU

3.61 TFlops

9.7 TFlops

11.54 TFlops

Achieving High Performance Computing with GPUs

https://github.com/karlrupp/microprocessor-trend-data

K
arl R

upp, TU
 W

ien, G
itH

ub

EPYC 7763 CPU
204.8 GB/s

1.6 TB/s

1.2 TB/s

Achieving High Performance Computing with GPUs

https://github.com/karlrupp/microprocessor-trend-data

Data is the Future of Scientific Discovery

• Larger amounts of data to
process in Earth Sciences

• GPUs can provide the needed
bandwidth to process this data

• GPUs excel in ML & may “avoid”
physics compute cost

• Note: General Purpose GPU
(GPGPU) Programming allow
use beyond GPU specialties
– Matrix operations (AI)
– Graphics (per pixel ops)

Achieving High Performance Computing with GPUs

https://www.science.org/doi/10.1126/science.1197869

https://www.science.org/doi/10.1126/science.1197869

Significant GPU Adoption and Exploration in Earth Sciences

Achieving High Performance Computing with GPUs

NVIDIA Collaborations with Atmospheric Models (S. Posey, MultiCore10)

https://drive.google.com/file/d/19dwgrbmpYTXfUfcZ9BUfjhmWEtPPwDfh/view?usp=sharing

Achieving High Performance Computing with GPUs

Kumar, et al (Multicore10) and Randall, et al EarthWorks Proposal

MPAS-A
An atmospheric model that

solves the compressible
non-hydrostatic equations in both

global and regional
configurations with variable

resolution configurations

Blue (Xeon CPUs)

Gold (V100 GPUs)

Significant increase in
simulated Days/Hr for
10km resolution case

https://drive.google.com/file/d/1fnRxqouu34qLKt6oiXfhzO7wri_EU-py/view?usp=sharing
http://hogback.atmos.colostate.edu/earthworks/pdf/EarthWorks-proposal.enhanced.pdf

History of GPU Computing

Overview

GPU Course of History

• 1978 - First GPGPU from Ikonas Graphics Systems
 A Graphics Processing and Raster Display for cockpit instrumentation (SIGGRAPH 78)

• 1986 - Tim Van Hook, solid modeling and ray tracing microcode (SIGGRAPH 86)

• 1994 - “GPU” term coined by Sony under PlayStation video game console
• 2001 - First matrix multiplication and PDE solvers run on GPUs

 NVIDIA GeForce 3 with programmable shaders and floating-point

 Mark Harris, “Real Time Cloud Rendering” and “Real Time Cloud Simulation and Rendering” 2003 Dissertation

• 2002 - “GPGPU” term coined by Mark Harris
• 2007 - Release of CUDA
• 2009 - Release of OpenCL, Foundations laid for unified memory concept
• 2011 - OpenACC v1.0 “forks” from OpenMP
• 2020 - 25% of Top500 with NVIDIA GPUs

History of GPU Computing

graphics-history.org/ikonas/ and M. Harris “A Brief History of GPGPU”

http://portal.acm.org/citation.cfm?id=807412
http://portal.acm.org/citation.cfm?id=15922.15887
https://dl.acm.org/doi/10.1145/582034.582089
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6705
http://www.markmark.net/clouds/
https://dl.acm.org/doi/10.5555/997457
https://www.graphics-history.org/ikonas/
https://www.cs.unc.edu/xcms/wpfiles/50th-symp/Harris.pdf

Faltering Moore’s Law

Transistor counts still increasing but had to switch to parallel processors in 2004
Diminishing returns on CPU performance forced greater adoption of GPUs

History of GPU Computing

Karl Rupp, GitHub

“A New Golden Age for Computer Architecture”, Hennessy & Patterson ACM Communications

https://github.com/karlrupp/microprocessor-trend-data
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Why Is GPU History Important?

Understand CONTEXT & FUTURE DIRECTION of GPU development
Trust the LONG & ESTABLISHED communities around scientific use of GPUs

Specific Narrow Applications Many Broad Applications
 (Graphics only) (LinAlgebra, FFTs, PDEs, DNNs)

Many years of software abstraction to enable general developers to use GPUs.
No more microcode or low level languages required!

History of GPU Computing

40+ years

Trends in CPU and GPU Performance

Overview

Heat Dissipation and Performance

Why the switch to parallel
processors in 2004?

Trends in CPU and GPU Performance

“Exascale Computing Trends” Kogge & Shalf, 2004 and LLNL slides

• Higher clock
frequencies led to
higher heat output

• No longer able to
reduce supply
voltages

https://ieeexplore.ieee.org/document/6634083
https://eehpcwg.llnl.gov/documents/conference/sc13/av_computer_architecture_shalf.pdf

Energy Efficiency and Data Locality

Trends in CPU and GPU Performance

Heterogeneous (CPU+Accelerator) fastest way
predicted to achieve lowest energy use & high efficiency.

Intranode/SMP
and

Internode/MPI Communication
On-chip communication

Takeaway: Keep data
movement nearby!

“Exascale Computing Trends” Kogge & Shalf, 2004 and LLNL slides

https://ieeexplore.ieee.org/document/6634083
https://eehpcwg.llnl.gov/documents/conference/sc13/av_computer_architecture_shalf.pdf

Data Locality Promotes Green Computing

Maintaining data locality, as inherent by design of GPU
architectures, enables reduction in carbon emissions

• MPAS 10 km, 72 GPUs or nodes
– CPU Cheyenne: 9.75 kg CO2
– GPU Summit: 2.26 kg CO2

• MPAS 3 km, on 804 GPUs or nodes
– CPU Cheyenne (est): 330 kg CO2
– GPU Summit: 87 kg CO2

R. Loft, AMS 2020 - “Reducing the Footprint of MPAS Weather Modeling with GPUs”

https://drive.google.com/file/d/1fpGvVEft-QSq-o5_0kzhUDM8DEtZFlLH/view

Performance Efficiency of GPUs

Trends in CPU and GPU Performance

● GPUs are continuing to see a consistent increase in
performance per watt

● Recently, both theoretical single and double precision TFLOP
GPU performance consistently exceed CPU

● Significant opportunity cost on GPUs using double precision
“Summarizing CPU and GPU Design Trends” Sun, et al 2019

https://arxiv.org/abs/1911.11313

Side Note: Consider Mixed Precision Arithmetic

• Single Precision floating point can often still maintain significant
accuracy in specific ranges

• Models often memory bound, reduced precision increases bandwidth
• Any precision error handled by mean of ensemble or nonlinear chaos

– Hatfield’s ECMWF presentation “Mixed Precision Arithmetic in Earth System Modeling”
– JAMES article “Weather and Climate Model in 16-bit Arithmetic”

Trends in CPU and GPU Performance

https://events.ecmwf.int/event/167/contributions/1378/attachments/806/1428/AS2020-Hatfield.pdf
https://www.essoar.org/doi/10.1002/essoar.10503741.1

Present Shift in the HPC Computational Model

Old Constraints

• Peak clock frequency as primary limiter for
performance improvement

• Cost: FLOPs are biggest cost for system:
optimize for compute

• Concurrency: Modest growth of parallelism
by adding nodes

• Memory Scaling: maintain byte per flop
capacity and bandwidth

• Locality: MPI+X model (uniform costs
within node & between nodes)

• Uniformity: Assume uniform system
performance

• Reliability: It’s the hardware’s problem

Trends in CPU and GPU Performance

New Constraints

• Power is primary design constraint for
current HPC system design

• Cost: Data movement dominates: optimize
to minimize data movement

• Concurrency: Exponential growth of
parallelism within chips

• Memory Scaling: Compute growing 2x
faster than capacity or bandwidth

• Locality: must reason about data locality
and possibly topology

• Heterogeneity: Architectural and
performance non-uniformity increase

• Reliability: Cannot count on hardware
protection alone

“Exascale Computing Trends” Kogge & Shalf, 2004 and LLNL slides

https://ieeexplore.ieee.org/document/6634083
https://eehpcwg.llnl.gov/documents/conference/sc13/av_computer_architecture_shalf.pdf

Vector and Thread Processing
CPU vs GPU

Overview

Recall - Flynn’s Taxonomy

GPUs process essentially SIMD operations at massive parallel scale.
Hardware differences renames this to SIMT, T=Threads.

Single Data Multiple Data

Single
Instruction

● SISD
● typical CPU thread

● SIMD
● vector processors
● GPU thread blocks

Multiple
Instruction

● MISD
● possibly set of filters
● fault tolerance and

redundancies

● MIMD
● cluster of nodes
● multi-core CPU

Vector and Thread Processing - CPU vs GPU

SIMD vs SMT vs SIMT

SIMD uses vector units while SIMT leverages threads. A hybrid of the two,
SMT (Simultaneous Multi-Threading) refers to multiple threads per CPU core

Vector and Thread Processing - CPU vs GPU

https://www.hardwaretimes.com/simd-vs-simt-vs-smt-whats-the-difference-between-parallel-processing-models/ https://thomassmart.github.io/2018/10/24/Hyper-V-CPU-Scheduler.html

https://www.hardwaretimes.com/simd-vs-simt-vs-smt-whats-the-difference-between-parallel-processing-models/
https://thomassmart.github.io/2018/10/24/Hyper-V-CPU-Scheduler.html

CPU vs GPU

CPU - AMD EPYC Bus
64 cores (seats)

2 threads per core
4 double precision values in

256-bit vector registers

GPU - A100 Shinkansen
108 SMs (cars)

64 warps/SM (seats)
32 SIMT threads per warp
1 register set per thread

Busiest Bus Terminal (NYC): ~225 thousand/day Busiest Train Station (Shinjuku, Tokyo): ~3.5 million/day

64 x 2 x 4 = 512 SIMD ops 108 x 64 x 32 = 221,184 SIMT ops!

Vector and Thread Processing - CPU vs GPU

CPU vs GPU

CPU - AMD EPYC Bus
Adaptable to different road types

(complex ALUs)
Many different roads to use

(branch prediction)

GPU - A100 Shinkansen
Must follow laid track

(simpler ALUs)
Fewer options for destinations

(no branch prediction)

Vector and Thread Processing - CPU vs GPU

Can change lanes, traffic manageable?
(Large memory and caches)

Small parallel capacity, complex tasks

Passenger load/de-load very slow
(High cost to move memory to device)

Large parallel capacity, high throughput

Side Note: Branchless Programming

If IF-ELSEIF branches in your GPU kernels concern you...

def Smaller_Branchless(a, b):
 return a * (a < b) + b * (b <= a)

Creel, YouTube - “Why ‘If’ Is Sloowww… and What You Can Do About It?”

def Smaller(a, b):
 if a < b:

 return a
 else
 return b

Vector and Thread Processing - CPU vs GPU

https://www.youtube.com/watch?v=bVJ-mWWL7cE

Some awareness of threaded processing will help towards
optimizing performance of GPU kernels, ie compute units, that are

scheduled on the GPU.

We will go into more detail on these concepts in later sessions

Vector and Thread Processing - CPU vs GPU

GPU Software Paradigms and Community Support

Overview

Building Trust in GPU Community Tools

When developing software, there are many lower levels of computer
architecture that we don’t directly interact with and many times require

little awareness of.

Essentially, we have to trust that decisions made by microprocessor
architects and compiler engineers are making good decisions for us

when their tools build our intended software

Do you trust your colleagues to make optimal decisions?

GPU Software Paradigms and Community Support

NVIDIA’s Software Ecosystem

GPU Software Paradigms and Community Support

https://developer.nvidia.com/hpc-sdk

We will cover many of these
topics in this workshop

https://developer.nvidia.com/hpc-sdk

Recall - Descriptive vs Prescriptive Programming

Progress in GPU computing has significantly reduced barrier to entry.
Compilers and other tools can do the heavy lifting for you.

OpenMP (flexible)
MPI CUDA

OpenACC (flexible)
do concurrent std::par

GPU Software Paradigms and Community Support

Comparison of GPU Programming - Compatibility

CUDA / HIP (AMD) - Often requires new codes and rewrites
OpenACC/OpenMP - Easy to implement, achieves good enough performance

GPU Software Paradigms and Community Support

From / To CUDA OpenCL SYLC OpenACC
OpenMP

HIP

C/C++ Add Code Add Code Add Code Pragmas Add Code

Fortran Add Code Rewrite Rewrite Pragmas Rewrite

CUDA Keep Structure Keep Structure Rewrite Convert

OpenCL Keep Structure Keep Structure Rewrite Keep Structure

SYLC Keep Structure Keep Structure Rewrite Keep Structure

OpenACC
OpenMP

Rewrite Rewrite Rewrite Rewrite

HIP Convert Keep Structure Keep Structure Rewrite

If you need the best
performance for a
GPU kernel, CUDA
can be used
alongside pragmas

PRACE, “Best Parctice Guide - Modern Accelerators”

https://drive.google.com/file/d/17LKgnRsdBWABujXaR7UvZ-zxQ7S4nRju/view

Best Practices with GPU Software Development

GPU Software Paradigms and Community Support

Libraries Directives
CUDA,

Programming
Languages

Drop-In, heavily tested,
optimized performance

Easy acceleration, good
enough performance

Max flexibility, control, &
performance; Most effort

1 2 3

Only a suggested order of implementation as part of a GPU project, depends highly on model needs.

Best Practices with GPU Software Development

GPU Software Paradigms and Community Support

Libraries Directives
CUDA,

Programming
Languages

Drop-In, heavily tested,
optimized performance

Easy acceleration, good
enough performance

Max flexibility, control, &
performance; Most effort

When using any of these approaches, ALWAYS MEASURE PROGRESS

Profile → Determine Limiter → Apply Optimizations → Iterate

using NSight Systems and Nsight Compute

Comparing Performance of Programming Paradigms

GPU Software Paradigms and Community Support

J. Larkin, “An Update on the NVIDIA HPC SDK”

https://openmpcon.org/conf2021/program-archive/

Comparing Performance of Programming Paradigms

GPU Software Paradigms and Community Support

Accelerated
libraries offer best
performance

J. Larkin, “An Update on the NVIDIA HPC SDK”

https://openmpcon.org/conf2021/program-archive/

Future Directions of GPU Programming
Tools are constantly being expanded upon towards...

• Increasing performance of descriptive programming approaches
– OpenACC/OpenMP robustly supported, may merge?
– ISO Standard parallelism (do concurrent & std::par)

• Promoting portability in software design

• Developing robust libraries that are widely available
– Very easy to drop in ML/AI apps for GPUs, Legate Numpy/cuNumeric
– GPU equivalents to MKL and many important math algorithms

GPU Software Paradigms and Community Support

How to Approach GPU Projects or GPU Refactoring

Overview

GPU Modernization Project Refactorization Template

1. Refactor and remove GPU anti-patterns
a. Global variables, memory movements
b. Incompatible data constructs, ie STL

2. Create a mini-app to explore design space
3. Use portable abstractions and frameworks
4. Focus on a specific use case
5. Search for additional parallelism
6. Manually manage memory
7. Iteratively apply the steps above

Large projects & new software that intends to have a long life cycle require effective planning.

This LLNL project example took ~4 years, but this was early in the team’s learning of heterogeneous
GPU architectures. Newer tools & portable abstraction frameworks, like OpenACC, will speed this up!

D. Richards, LLNL exascaleproject.org/event/sierra_and_elcapitan_coe/

How to Approach GPU Projects or GPU Refactoring

https://www.exascaleproject.org/event/sierra_and_elcapitan_coe/

Performance Impacts Along Project Development

Initial work will likely see
reduced performance of
your model.

However, once data
movement and other
optimizations are
performed, the benefits
can be significant.

How to Approach GPU Projects or GPU Refactoring

D. Richards, LLNL exascaleproject.org/event/sierra_and_elcapitan_coe/

https://www.exascaleproject.org/event/sierra_and_elcapitan_coe/

Effective planning and coordination amongst your team and with
external communities of practice will provide you the most benefit.

We will cover aspects of this process as part of a later topic,
Co-Design

How to Approach GPU Projects or GPU Refactoring

Thank you!
Any Questions?

Additional Resources
AI Learning Materials/Courses for Earth Sciences - AI2ES
PRACE: “Best Practice Guide for Modern Accelerators”

Nature: “The Digital Revolution of Earth-System Science”
ACM: “A vision for GPU-accelerated parallel computation on

geo-spatial datasets”

Questions

https://www.ai2es.org/products/education/
https://drive.google.com/drive/folders/1e5cfjwIIiTogd3n894V6uwtKDs8wdAuo
https://www.nature.com/articles/s43588-021-00023-0#Fig3
https://dl.acm.org/doi/abs/10.1145/2766196.2766200
https://dl.acm.org/doi/abs/10.1145/2766196.2766200

Extra Slides

Extra Slides

Example Model Speedups

J. Adie & S. Posey via WRFg from Tempoquest and NCAR

Achieving High Performance Computing with GPUs

https://wrfg.net/

Roofline V100 Performance of “Dwarf” Algorithms

Normal roofline model for V100 Same, constrained to PCIe Bandwidth

Performance of GPUs capable of exceeding CPUs, however if data movement is not
managed appropriately (uses PCIe too frequently), CPUs are better.

PRACE, “Best Practice Guide - Modern Accelerators”

Trends in CPU and GPU Performance

https://drive.google.com/file/d/17LKgnRsdBWABujXaR7UvZ-zxQ7S4nRju/view

SIMD vs SMT vs SIMT

Flexibility: SMT > SIMT > SIMD
Performance: SIMD > SIMT > SMT

Vector and Thread Processing - CPU vs GPU

https://www.hardwaretimes.com/simd-vs-simt-vs-smt-whats-the-difference-between-parallel-processing-models/ https://thomassmart.github.io/2018/10/24/Hyper-V-CPU-Scheduler.html

Threaded processes allow
Multiple register sets, addresses, flowpaths

https://www.hardwaretimes.com/simd-vs-simt-vs-smt-whats-the-difference-between-parallel-processing-models/
https://thomassmart.github.io/2018/10/24/Hyper-V-CPU-Scheduler.html

